
POISEUILLE'S FLOW AND THERMAL CREEP FOR DIFFERENT SCATTERING KERNELS 

FOR A GAS SCATTERED BY A CHANNEL SURFACE 

Yu. I. Markelov, B. T. Porodnov, 
V. D. Seleznev, and A. G. Flyagin 

UDC 533.15 

The well-known Maxwellian diffuse-specular model of boundary conditions cannot com- 
pletely describe the presently available experimental results on the flow of a rarefied gas 
in long channels. Within the scope of this model, it is not possible to explain Hobson's 
accommodation pumping effects [i] and the temperature dependence of the free-molecular re- 
duced gas flow rate in capillaries [2, 3]. For this reason, it is necessary to develop and 
examine new, more suitable, models of boundary conditions that can describe the interaction 
of a gas with the surface. In [4], a quite simple two-parameter scattering kernel is pro- 
posed, which follows both from a physical and from a purely mathematical analysis of the 
problem. However, this kernel does not take into account the possibility of capture of mole- 
cules on the surface followed by their diffusive evaporation. In this paper, we propose to 
take into account this mechanism of the interaction of molecules with the surface by super- 
posing the kernel proposed in [4] with the diffusion scattering function. The combined 
model proposed for the boundary conditions and the Cercignani--Lampis scattering kernel are 
then applied to the problem of isothermal and nonisothermal gas flow in the free molecular 
regime in a long channel in order to check their effectiveness in describing the corre- 
sponding experimental data. 

i. Formulation of the Problem. We are examining an isothermal flow of a monatomic 
gas in the free molecular regime in an infinitely long cylindrical channel in the presence 
of a pressure gradient along the channel. The geometry of the problem is illustrated in 
Fig. i. It is convenient to represent the velocity vector of a molecule in terms of the 
components v~, v~, and Vz, which depend on the coordinates of the point of observation (v n 
is the radial component). The gas has the temperature of the wall T. 

In calculating the macroscopic properties of the gas flow, we used the relations ob- 
tained in [5] in which for the Poiseuille's flow the following expression is obtained: 

1i, = I~o(t -b 3<h+ho>), (i.I) 

...... 2~ t" oxp ( -  ~v ~) / (v) dv, </(v)> - ~ .  v,~ 
+ 

where I~~ = ~ - - 7  1~31~ ' is the Poiseuille's flow through the channel with a completely 

accommodating surface; n' is the gradient of the number density of molecules; R is the radius 
of the channel; B = m/2kT; m is the mass of a molecule; k is Boltzmann's constant; ho = 
VnVz/(V n + v~) follows from the geometry of the problem; h + is the solution of the integral 
equation 

h + :-=: Ph0 -l- 1Oh +, (1 .2 )  

b/(v)  = ~ ~ (vt~-~ v') / (v') dv', v1~ ~= (-- ~'~, ,,~, ~), 
+ 

P ( v ' - +  v) i s  t he  s c a t t e r i n g  k e r n e l  f o r  m o l e c u l e s  o f  a r a r e f i e d  gas s c a t t e r e d  by t h e  s u r f a c e  
[4 ] .  The s i g n  "+" i n  t h e  i n t e g r a n d  i n d i c a t e s  i n t e g r a t i o n  o v e r  t h e  uppe r  v e l o c i t y  h a l f - s p a c e .  

The m o l e c u l a r  f l o w  unde r  t he  a c t i o n  of  t h e  p r e s s u r e  g r a d i e n t  i s  accompanied  by a f l ow  
of  k i n e t i c  e n e r g y  ( m e c h a n o c a l o r i c  e f f e c t ) :  
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where 

i 
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Fig. i 

Qo == -- -y l~3n' k T" 

The mechanocaloric effect is the cross effect with respect to thermal creep (flux of mole- 
cules I T in the presence of a temperature gradient on the channel wall). Following [5], it 
is possible to obtain the relation 

=: 5/2 - -  QH~kT, ( 1 . 4 )  

where y = (IT/ITo)!po/l p is the characteristic of the thermal molecular pressure difference 
(TPD), arising in the system of two columns with gas connected by a capillary and kept at 

2 [ n ~I/~R 3 n dT is the flux of thermal creep under complete different temperatures; [To -- y \ - - ~ - ]  T dz 

diffuse reflection. 

Knowledge of the expressions for the Poiseuille's flow (i.i) and for the TPD index 7 
(1.4) permits calculating the nonisothermal molecular flux I T. 

2. Calculation of the Isothermal and Nonisothermal Flows of Gas for a Scattering 
Kernefof General Form. In order to carry out the calculations using Eqs. (i.i) and (i.3), 
it is necessary to solve the integral equation (1.2). An approximation solution of this 
equation can be obtained by a variational method without the restrictions of any specific 
model for the scattering kernel. For Eq. (i.i), we form the variational functional [5] 

J{h+} = (h+(2Ph0 -t- ~h+  - -  h+)> 

and assume that 

h ~ = APho.  

For A = i, this function is the first approximation of the solution of Eq. 
iteration method. Expression (2.2) minimizes the functional with 

A = S~/(S2 -- Sa), Sh = <hoP~ho). 

(2.1) 

(2.2) 

(1.2) by the 

(2.3) 

Now, knowing h+(v), 
an arbitrary scattering kernel 

I~, ::= Ivo(l -~- 3ASO; 

Q = Qo(i + (3/2)~A<v~hoPho>); 

= ~ - -  ( l  + 3AS1) 

The s o l u t i o n  o f  Eq. ( 1 . 2 )  c a n  a l s o  b e  r e p r e s e n t e d  i n  t h e  f o r m  o f  a Neumann s e r i e s  

I f  t h e  Neumann s e r i e s  ( 2 . 7 )  c o n v e r g e s ,  t h e n  t h e  f l u x e s  h a v e  t h e  f o r m  

( I . : =  I .o  l q-:3 ~.~ Sh , 
h=q / 

Q=Oo 1+ ~ :'v,~ 
k~q 

it is possible to write an expression for the flows and TPD index y for 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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wh ere 

V~ : :  <v2hoP~ho>. 
It is convenient to use the expression obtained in analyzing the effect of different 

scattering kernels, describing the interaction of a gas with a surface, on the macroscopic 
characteristics of the flow of a rarefied gas. 

3. Calculation of the Macroscopic Characteristic of Gas Flow for Some Scattering 
Kernels. For a Maxwellian model of the boundary conditions, Eq. (1.2) has an exact solu- 
tion. After a number of simple transformations, we can obtain 

- I 2 - - a ,  (2 - a )  , 
-- ' , . , ,  ( - - 7 - ) ,  o - - o .  T ,  7 ,  ( 3 . l )  

where a is the fraction of diffusely reflected molecules. 

Cercignani and Lampis propose the following two parameter scattering kernel [4]: 

(v'  v) = "~ 4 + -- I - v, t , 

where Io is the zeroth-order Bessel function of the first kind with imaginary argument. 

The parameters a n and ~t coincide with the Knudsen coefficients of accommodation of 
normal energy and tangential momentum [6]. 

Due to the complexity of the form of the kernel, it is not possible to obtain an 
analytic variational solution of Eq. (1.2) for this kernel. Only if ~n and a t are close to 
i, is it possible to arrive at the following simple expressions for the flows and the index 
y :  

T 

- ( :~a ( t  - %) [ _ 
( ~ -  0 o  i 1 - ,7- ,  ;~ 32~-t L 

3n (1 ~l) 
[ a ( l - -  o:,3 - - -  Ig L 1 - -  ig 

t - % ] / ,  
I ]i; ] J '  ( 3 . 3 )  

1-- %71 
~; ]}; ( 3 . 4 )  

3a-- 8 ] 
- g - - ( 1  - -  ~z3 . ( 3 . 5 )  

As is evident from expressions (3.3)-(3.5), the dependence of the macroscopic charac- 
teristics of the gas flow on the parameter a n is weaker than on a t . This makes it possible 
to examine the Cercignani-Lampis kernel (3.2) with a single parameter at, when a n = !~ In 
this case, it is possible to carry out all the mathematical calculations in solving the 
integral equation (1.2) by the variational method and to calculate the expressions S k and V k 
in the parentheses, necessary for calculating the macroscopic characteristics of the gas 
flow, without any simplifications for arbitrary values of at: 

& = 2 ( i  - ~ ) ~  ~ b 1 - -  t - -  (1 - -  ~L) ~; �9 ' (3.6) 

3 
Vl, = ~ St, ~1 ~ (I - -  ~)l, .  ( 3 . 7 )  

It should be noted that if the accommodation is nearly total, then the expressions for the 
macroscopic characteristics, obtained for a single-parameter Cercignani--Lampis kernel, 
coincide with expressions (3.3)-(3.5), if in the latter the terms of order (I -- an,t) 2 are 
neglected. 

Substituting for S k and V k in Eqs. (2.8) and (2~ permits calculating the values of 
Ip, Q, y, and I T when h+(v) can be represented in the form of a Neumann series. 

In order to obtain the temperature dependence Ip(T) , we shall examine the physical 
derivation of the Cercignani--Lampis scattering kernel [4]. In this paper, the interaction 
of the gas molecules with a solid body is viewed as a random wandering of molecules in a 
surface layer of thickness d with characteristic diffusion length I in velocity space in a 
direction tangential to the surface. The parameter ~t in the kernel (3.2) is determined in 
terms of the properties of the gas--solid-body interaction l, d as follows [4]: 

a t =-: t -- cxp {--2d/l}. ( 3 . 8 )  
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TABLE 1 

Param- [ ] 
eter T, K lYe 

a t [t1 I 77--29577 I 0,750'79 
a t [2] 2!15 0,9l 

Ne [ Ar 

0,80 I 0,9l 
0,84 0,89 
0,89 0,97 

Kr 

0,94 

Xe 

0,94 

1,00 

TABLE 2 

a) 

T,K 
N, I I t , , I  ,,, 

Reference [21 
77,2 t,389 '1.'144 1.210 .I.q<7 11,2471 t'233 1.210 

1,22q lI(F. 2 t,137,11t52 

Reference [3 ] 
295 I 1,148 ] 1.167 1,047 1,047 ] 1,052, 
395 t,096 [ 11128 t,058 1.[147 [I,049 
44o ] 1,07911A19 11075 1,047 1.062 

l ;t23 t,099 LqO 1 ,(}8o I 1,049 1,058 

We will assume that the finiteness of the diffusion length stems from the thermal 
fluctuations of the solid body and the nonideal nature of the structure of the surface (e.g., 
the presence of roughness). Then, the probability of collisions of molecules in the surface 
layer 2d/l will be the sum of the probabilities of collisions with surface defects p and 
with phonons of thermal oscillations. Assuming that the probability of collisions with 
phonons is proportional to their number, which, in its turn, is proportional to temperature, 
expression (3.8) can be rewritten in the form 

a t = i -- exp {--~ + qT)}~ (3.9) 

where q is some constant that characterizes the cross section of the interaction of gas 
atoms with the phonons of the solid body. 

The physical derivation of the scattering function (3.2) does not take into account 
the possibility for gas molecules to be captured by the surface followed by their evapora- 
tion according to a diffusion law. For this reason, it is completely logical to combine 
the Cercignani--Lampis kernel (3.2) with the diffusion kernel P0(v'-+v) by introducing the 
condensation coefficient (or attachment coefficient) s in the form 

PI~(v' ---* v) = sPo(v' ---* v) ~- (i -- s)Pe (v' -+ v). (3 .10)  

The simplest approach to condensation and accommodation phenomena was proposed in [7]. 
Following [7], the expression for the attachment coefficient s can be represented in the 
form 

s == 1 -- exp{--Ts/T}, (3.11) 

where T s is the temperature, corresponding to the critical energy for capture of a molecule 

by the surface. 

The calculation of the isothermal flow, according to Eq. (2.4), using the kernel (3.10) 
and expressions (3.9) and (3.11), leads to the following temperature dependence of the re- 

duced flow rate m: 
Ts 

Ip ~ --T (07, ! qT r . . . . .  I i ~ - ~  - - '1 )  -~. ( 3 . 1 2 )  
lp0 

4. Compar i son  w i t h  E x p e r i m e n t .  In  [1 ] ,  i t  was shown e x p e r i m e n t a l l y  t h a t  t h e  TPD i n -  
dex y i n  t h e  f r e e - m o l e c u l a r  r e g i m e  d i f f e r s  f rom the  v a l u e  y = 1 / 2 ,  which  f o l l o w s  n o t  on ly  
for complete diffuse reflection, but also for the specular-diffuse scheme with arbitrary 
fraction of diffuse reflection (3.1). Application of the Cercignani-Lampis boundary condi- 
tions yields Eq. (3.5), which explains the deviation of y from 1/2. 

According to the experimental data in [i, 2], using relations (3.3) and (3.5) with 
a n = i, it is possible to calculate the parameter a t for the Cercignani--Lampis kernel. 
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TABLE 3 

Parameter He [ Ne 
I 

Ar [ H.~ ] D~ 

l 
7" 4, K ,23,l :i3,!) '122,0 45,I ]6{i,0 
_+'f~T~.I(P 3 14 23 48 ]86 

1 

p 0,74~1[ 1,271 (},280 0,92(} 0,666 
! Ap. 10 :~ 3 [ 16 23 60 74 

q.lO ~, K-1 
• Aq. 1 ()'~ ~ ,451 0,232 0,919 0,6~0[ 0,7~6 

4 6 i6 20 

Table i shows the values of u t for a number of inert gases on fused glass, calculated from 
data on the investigation of the accommodation pumping effect [I] and isothermal flow of 
rarefied gases [2]. The values of the parameter at~ corresponding to isothermal gas flow, 
are presented for two temperatures, at which the ends of the channels in Hobson's experi- 
ments were maintained. 

The satisfactory agreement between the values of a t obtained in different types of 
experiments confirms the effectiveness of using the Cercignani--Lampis boundary conditions 
in describing the isothermal and nonisothermal motion of rarefied gases. 

The experimental data on the temperature dependence of the reduced free molecular iso- 
thermal flows m, obtained in [2-3] for long capillaries made of fused glass, are summarized 
in Table 2. The deviation of ~ from unity is a result of incomplete accommodation of gas 
molecules on the surface of the solid body. For each of the gases presented in Table 2, 
the values of the parameters p, q, and Ts, which are presented in Table 3, were obtained by 
a nonlinear least-squares method from the condition that the deviation of the experimental 
set of values ~(Ti) from the theoretical dependence (3.12) is a minimum. 

Expression (3.12) with the values of p, q, and T s from Table 3 describes the experi- 
mental temperature dependence ~(T) to within 3%, which confirms the usefulness of the com- 
bined scattering kernel (3.10) with the temperature dependences (3.9) and (3.11) for its 
parameters as boundary conditions for the molecular distribution function of a rarefied 
gas. 
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